基于深度学习的超声图像左心室射血分数自动测量研究
DOI:
CSTR:
作者:
作者单位:

东南大学生物科学与医学工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

本项目受到国家重点研发计划(2017YFA0104302)和国家自然科学基金(61871126)的支持。


AUTOMATIC MEASUREMENT STUDY OF LEFT VENTRICULAR EJECTION FRACTION VIA DEEP LEARNING IN ULTRASOUND IMAGES
Author:
Affiliation:

School of Biological Science and Medical Engineering, Southeast University

Fund Project:

This work was supported in part by National Key R&D Program of China(2017YFA0104302)and National Natural Science Foundation of China (61871126).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高基于超声心动图Simpson法的左心室射血分数(LVEF)测量的效率,提出了一种深度学习自动测量LVEF的方法。首先,建立卷积神经网络(CNN),利用收集的38153张标记的数据对网络进行训练测试和验证,将采集到的超声心动图数据自动分成五类,从而获取到心尖二腔切面(A2C)和心尖四腔切面(A4C);其次,建立全卷积网络,以VGG-19为主干架构,利用收集的3871张 A2C 和 4679张A4C数据进行训练验证,对自动获得的A2C和A4C的左心室进行自动分割,并计算得出LVEF。测试结果显示,该方法在得到A2C和A4C的准确率达96.8%,而分割真阳性率达到88.8%,所得LVEF误差率为0.038947。由于所提出的方法是完全利用机器去完成,较传统的方法精度和效率更高。

    Abstract:

    To improve the efficiency of measuring left ventricular ejection fraction(LVEF)based on echocardiography, This paper proposes a new method for automatically calculating LVEF based on deep learning. Firstly, The convolution neural network (CNN), trained verified and tested by 38,153 marked echocardiography data, is used to divide the collected echocardiographic data into five categories and apical four-chamber view(A4C) and apical two-chamber view(A2C) are obtained. Then, the fully convolutional networks (FCN) ,using VGG-19 as the backbone architecture, trained and verified by collected 3871 A2C and 4679 A4C data, is used for segmenting the left ventricle of the two obtained views and the LVEF is obtained. Finally, The test result shows that the accuracy of obtaining the A4C and A2C is 96.8% and the true positive rate of segmentation is over 88.8%. A error is 0.038947 between the automatic and manual. The proposed method is calculated by the machine, which is more accurate and efficient than the conventional method.

    参考文献
    相似文献
    引证文献
引用本文

蒋建慧,罗守华.基于深度学习的超声图像左心室射血分数自动测量研究[J].临床超声医学杂志,2019,21(1):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-11-05
  • 最后修改日期:2018-11-13
  • 录用日期:2018-11-19
  • 在线发布日期: 2019-01-28
  • 出版日期:
文章二维码

扫码关注

官方微信