基于级联结构的肺癌患者颈部淋巴结超声图像分割研究
DOI:
CSTR:
作者:
作者单位:

上海胸科医院

作者简介:

通讯作者:

中图分类号:

基金项目:

上海市卫生健康委员会科研课题面上项目


RESEARCH ON ULTRASONIC IMAGE SEGMENTATION OF CERVICAL LYMPH NODES IN LUNG CANCER PATIENTS BASED ON CASCADE STRUCTURE
Author:
Affiliation:

Fund Project:

General project of scientific research subject of Shanghai Municipal Health Commission

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了正确诊断肺癌转移,本文应用深度学习技术对肺癌患者颈部淋巴结超声图像病灶区域分割,提出了一种用于超声图像分割的级联注意力UNet网络,该级联结构是将注意力UNet与EfficientNet相结合的二阶段分割网络,第一阶段为粗分割,第二阶段为细分割,编码器采用EfficientNet-B5作为主干网,图像多尺度输入;提出了适用于小目标、小样本场景的新损失函数;实验结果表明,该文提出的级联结构网络在颈部淋巴结超声图像分割中网络性能优异,Dice系数达到0.95,较其他UNet方法具有更优的分割性能。

    Abstract:

    In order to correctly diagnose the metastasis of lung cancer, this paper applies deep learning technology to segment the focus area of cervical lymph node ultrasound image of lung cancer patients , and proposes a cascade attention UNet network for ultrasound image segmentation. The cascade structure is a two-stage segmentation network combining attention UNet and EfficientNet. The segmentation model includes one-stage coarse segmentation and two-stage fine segmentation. The encoder uses EfficientNet-B5 as the backbone network. The multi-scale features of the image are taken as the input. A new loss function is proposed, which is suitable for small target and few-shot scenarios. The experimental results show that the proposed cascade structure has excellent network performance in cervical lymph node ultrasonic image segmentation, and the Dice coefficient reaches 0.95, which has better segmentation performance than other UNet methods.

    参考文献
    相似文献
    引证文献
引用本文

宫霞,吴卫华.基于级联结构的肺癌患者颈部淋巴结超声图像分割研究[J].临床超声医学杂志,2022,24(8):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-03
  • 最后修改日期:2022-04-20
  • 录用日期:2022-04-20
  • 在线发布日期: 2022-08-30
  • 出版日期:
文章二维码

扫码关注

官方微信