基于logistic回归模型及CHAID决策树模型的胎儿染色体异常预测研究
DOI:
CSTR:
作者:
作者单位:

1.重庆陆军军医大学陆军特色医学中心超声科;2.遂宁市中心医院超声科

作者简介:

通讯作者:

中图分类号:

基金项目:

]陆军特色医学中心人才创新能力培养项目(2019CXJXC014),重庆市影像医学与核医学临床医学研究中心(项目编号:CSTC2015YFPT-gcjsyjzx0175)。


Prediction of fetal chromosomal abnormalities based on logistic regression model and CHAID decision tree model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 使用logistic回归模型及CHAID决策树模型分析胎儿染色体异常的影响因素,并比较两种模型的优劣。方法 回顾性分析超声软指标(ultrasound soft marker,USM)阳性并具有羊水穿刺结果的642例单胎孕妇资料,以胎儿染色体结果为因变量,USM为自变量建立logistic回归模型及决策树模型筛选影响胎儿染色体结果的因素,绘制ROC曲线比较两种模型的效果。结果 单因素logistic回归模型显示NT增厚、鼻骨缺失、侧脑室增宽为胎儿染色体异常的危险因素;多因素logistic回归分析筛选NT增厚(OR=7.511,P<0.05)、鼻骨缺失(OR=4.819,P<0.05)、侧脑室增宽(OR=4.789,P<0.05)3个因素用于回归模型的拟合;CHAID决策树模型显示NT增厚、鼻骨缺失是胎儿染色体异常的影响因素;logistic回归模型ROC曲线下面积大于CHAID决策树模型(0.712vs 0.675,Z=2.267,P<0.05)。结论 logistic回归模型及决策树模型对胎儿染色体结果有一定的预测价值,且logistic回归模型优于决策树模型。 关键词:logistic回归模型;CHAID决策树模型;胎儿染色体异常;超声软指标

    Abstract:

    Objective To analyze the influencing factors of fetal chromosomal abnormalities by logistic regression model and Chi-squared Automatic Interaction Detector (CHAID) decision tree model, and compare the advantages and disadvantages of the two statistical methods. Methods The data of 642 singleton pregnant women with positive ultrasound soft marker and amniocentesis results were retrospectively analyzed,with fetal chromosomal abnormalities as the dependent variable and ultrasound soft marker as independent variables, logistic regression model and decision tree model had been established to screen the factors affecting fetal chromosomal abnormalities, and receiver operating characteristic (ROC)curve was drawn in order to see the differences of the effects of the two models. Results The univariate logistic regression model showed that the nuchal translucency thickening, absent nasal bone, and ventriculomegaly were the risk factors for fetal chromosomal abnormalities. Three factors were used to fit the regression model, these factors including nuchal translucency thickening(OR=7.511,P<0.05), absent nasal bone (OR=4.819,P<0.05) and ventriculomegaly (OR=4.789,P<0.05) were selected by the multivariate logistic regression model. The decision tree model showed that the nuchal translucency thickening and absent nasal bone were the influencing factors of fetal chromosomal abnormalities. The ROC curve area of the logistic regression model was larger while that of the decision tree model show a smaller area (0.712vs 0.675,Z=2.267,P<0.05). Conclusion Logistic regression model and decision tree model have certain value in analyzing the relationship between USM and fetal chromosomal abnormalities, and the logistic regression model is better than the decision tree model. Key words logistic regression model; CHAID decision tree model; fetal chromosomal abnormality; ultrasound soft marker

    参考文献
    相似文献
    引证文献
引用本文

阳蓉,罗孝勇,李陶.基于logistic回归模型及CHAID决策树模型的胎儿染色体异常预测研究[J].临床超声医学杂志,2022,24(12):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-14
  • 最后修改日期:2022-05-21
  • 录用日期:2022-06-02
  • 在线发布日期: 2022-12-30
  • 出版日期:
文章二维码

扫码关注

官方微信