人工智能辅助评分联合超声SWE技术对甲状腺结节良恶性的诊断价值分析
DOI:
CSTR:
作者:
作者单位:

1.西电集团医院超声科;2.西北大学附属医院西安市第三医院超声科

作者简介:

通讯作者:

中图分类号:

基金项目:


Diagnostic value of artificial intelligence assisted score combined with ultrasonic SWE in benign and malignant thyroid nodules
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 探讨人工智能辅助(AIAS)评分联合超声剪切波弹性成像(SWE)技术对甲状腺结节良恶性的诊断价值。方法 选取2021年1月~2023年1月西电集团医院收治的110例(共152个结节)甲状腺结节患者,按7:3比例采用随机数表法分为测试集(77例,109个结节)和验证集(33例,43个结节)。所有患者均接受病理检查、超声检查和超声SWE检查,并进行AIAS评分;比较测试集和验证集甲状腺结节患者一般资料、病理诊断结果和应变率比值(SR)、AIAS评分;建立超声SWE参数模型、AIAS评分模型和联合模型,采用受试者工作特征曲线(ROC)评价超声SWE模型、AIAS评分模型和联合模型预测甲状腺结节良恶性的效能;Delong检验评估模型间效能的差异,Hosmer-Lemeshow检验联合模型拟合度。结果 测试集77例甲状腺结节患者经手术或穿刺活检病理检检查共检出109个结节,其中良性结节45个(41.28%),恶性结节64个(58.72%);验证集33例甲状腺结节患者经手术或穿刺活检共检出43个结节,其中良性结节17个(39.53%),恶性结节26个(60.47%)。测试集和验证集恶性甲状腺结节患者SR值和AIAS评分均明显高于良性结节患者,差异有统计学意义(P<0.05);测试集中良性结节患者SR值和AIAS评分与验证集中良性结节患者无显著差异,测试集中恶性结节患者SR值和AIAS评分与验证集中恶性结节患者无显著差异(P>0.05)。ROC显示测试集SR值、AIAS评分联合诊断预测因子诊断验证集患者恶性甲状腺结节的AUC为0.917,灵敏度为82.81%,特异度为91.11%(P<0.05);验证集下超声SWE参数联合AIAS评分的诊断能力优于超声SWE参数、AIAS评分单独检测(P<0.05)。DeLong检验,AIAS评分联合超声SWE参数构建的联合模型预测恶性甲状腺结节的AUC最高(P<0.05);Hosmer-Lemeshow检验联合模型拟合度,Hosmer-Lemeshow χ2=7.692(P>0.05)。结论 AIAS评分联合超声SWE参数构建的联合模型对甲状腺恶性结节的预测价值较高,具有较高的校准能力和临床应用价值。

    Abstract:

    Objective To explore the diagnostic value of artificial intelligence assisted score (AIAS) combined with ultrasonic shear wave elastography (SWE) in benign and malignant thyroid nodules. Methods A total of 110 patients with thyroid nodules (152 nodules) admitted to XD Group Hospital were enrolled between January 2021 and January 2023. According to random number table method, they were divided into test group (77 cases, 109 nodules) and verification group (33 cases, 43 nodules). All patients underwent pathological examination, ultrasound examination and ultrasonic SWE, and AIAS was analyzed. The general data, pathological diagnosis results, ratio of strain rate (SR) and AIAS were compared between the two groups. The models of ultrasonic SWE parameters, AIAS and combined detection were constructed, and predictive efficiency of the above models for benign and malignant thyroid nodules was evaluated by receiver operating characteristic (ROC) curves. The differences in predictive efficiency of different models were evaluated by Delong test. The fit of the combined model was detected by Hosmer-Lemeshow test. Results In the 109 nodules from test group, operation or biopsy results showed that there were 45 benign nodules (41.28%) and 64 malignant nodules (58.72%). In the 43 nodules from verification group, operation or biopsy results showed that there were 17 benign nodules (39.53%) and 26 malignant nodules (60.47%). In the two groups, SR and AIAS in patients with malignant thyroid nodules were significantly higher than those with benign nodules (P<0.05). In patients with benign or malignant thyroid nodules, there were no significant differences in SR or AIAS between test group and verification group (P>0.05). ROC curves analysis showed that AUC, sensitivity and specificity of SR combined with AIAS in test group for predicting malignant thyroid nodules in verification group were 0.917, 82.81% and 91.11%, respectively (P<0.05). In verification group, diagnostic efficiency of ultrasonic SWE parameters combined with AIAS was superior to that of single detection (P<0.05). DeLong test showed that AUC of combined model (AIAS + ultrasonic SWE parameters) for predicting malignant thyroid nodules was the greatest (P<0.05). The fit of the combined model was detected by Hosmer-Lemeshow test: Hosmer-Lemeshow χ2=7.692 (P>0.05). Conclusion The combined model constructed by AIAS + ultrasonic SWE parameters has high predictive value for malignant thyroid nodules, high calibration ability and clinical application value.

    参考文献
    相似文献
    引证文献
引用本文

刘天鹰,王文利,段欣,牛华.人工智能辅助评分联合超声SWE技术对甲状腺结节良恶性的诊断价值分析[J].临床超声医学杂志,2024,26(10):

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-22
  • 最后修改日期:2024-02-23
  • 录用日期:2024-03-07
  • 在线发布日期: 2024-11-01
  • 出版日期:
文章二维码

扫码关注

官方微信