基于超声影像组学特征构建的联合模型鉴别1期三阴性乳腺癌与纤维腺瘤的临床价值
DOI:
CSTR:
作者:
作者单位:

1.三峡大学第一临床医学院宜昌市中心人民医院超声科;2.宜昌市中心人民医院

作者简介:

通讯作者:

中图分类号:

基金项目:


Ultrasound-Based Radiomics is valuable in differentiating stage 1 triple-negative breast cancer from fibroadenoma
Author:
Affiliation:

三峡大学第一临床医学院宜昌市中心人民医院超声科

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 探讨超声影像组学模型及临床参数在1期三阴性乳腺癌(TNBC)与纤维腺瘤中的诊断价值。方法 选取我院经病理确诊的乳腺病变患者340例,包括1期TNBC患者133例(TNBC组)和纤维腺瘤患者207例(纤维腺瘤组),将数据集以7∶3比例随机分为训练集(238例)和验证集(102例)。使用3D-slicer软件的Radiomics扩展包获得超声影像组学特征,通过最小绝对收缩和选择算子(LASSO)和Logistic回归建立超声影像组学模型。通过单因素分析并结合患者年龄、BI-RADS分类建立临床模型。基于超声影像组学特征和临床资料建立联合模型。绘制受试者工作特征(ROC)曲线评估各模型鉴别三阴性乳腺癌与纤维腺瘤的诊断效能。结果 在最终纳入的1期TNBC与纤维腺瘤患者中,每例患者的超声图像均提取851个超声影像组学特征,在对数据集进行标准化和归一化后,使用卡方检验、LASSO回归及十折交叉验证法筛选,最终获得12个特征,由此构建的超声影像组学模型在训练集和验证集的ROC曲线下面积分别为0.954、0.881。临床模型在训练集和验证集的ROC曲线下面积分别为0.837、0.815。联合模型在训练集和验证集的ROC曲线下面积分别为0.983、0.942。结论 基于超声影像组学和临床资料建立的联合模型在鉴别1期三阴性乳腺癌与纤维腺瘤中具有良好的诊断效能。

    Abstract:

    Objective The objective of this study is to evaluate the diagnostic value of ultrasonographic models and clinical parameters in patients with stage 1 triple-negative breast cancer and fibroadenoma. Methods A retrospective analysis was conducted on clinical and ultrasound imaging data from 133 patients with stage 1 triple-negative breast and 207 patients with fibronenoma who met the inclusion criteria at our hospital between February 2020 and November 2023. The dataset was randomly divided into a training set (n=238) and a validation set (n=102) in a 7:3 ratio. The radiomics features were obtained using the radiomics extension package of the 3D-slicer software,and the image omics model was established using LASSO and logistic regression. Through univariate analysis,combined with patient age and BI-RADS classification,a clinical model was established for the differential diagnosis of triple-negative breast cancer and fibroadenoma. The area under the receiver operating characteristic curve (AUC) was calculated to evaluate the performance of each model.Results Ultimately, 851 ultrasonic image omics features were extracted from each patient''s ultrasound images, representing the final cohort of stage 1 TNBC and fibrosarcoma patients included in the study. Following the normalization of the data set, 12 features were ultimately obtained through Chi-square test, LASSO regression, and 10-fold cross-validation. The area under the receiver operating characteristic curve for the ultrasonic image omics model constructed by this method is 0.954 and 0.881 for the training set and validation set, respectively. The area under the receiver operating characteristic curve (AUC) for the clinical model in the training set and validation set was 0.837 and 0.815, respectively. The AUC for the combined model in the training set and validation set was 0.983 and 0.942, respectively. Conclusion The combination of an ultrasound-based image omics model with clinical information represents a promising approach for the non-invasive quantitative analysis of stage 1 triple negative breast cancer and fibladenoma. This approach has demonstrated efficacy in the differentiation of these two entities.

    参考文献
    相似文献
    引证文献
引用本文

付奇环,刘蓉,闫玉莲,孔翼婷,余姝琦.基于超声影像组学特征构建的联合模型鉴别1期三阴性乳腺癌与纤维腺瘤的临床价值[J].临床超声医学杂志,2025,27(1):64-69

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-11
  • 最后修改日期:2024-09-09
  • 录用日期:2024-06-26
  • 在线发布日期: 2025-02-07
  • 出版日期:
文章二维码

扫码关注

官方微信