改进U-Net在心包积液超声心动图图像分割中的应用
DOI:
CSTR:
作者:
作者单位:

1.宁夏医科大学医学信息与工程学院;2.宁夏医科大学

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

教育部产学合作协同育人项目(22107040035230);2023年宁夏回族自治区区级大学生创新创业训练计划项目(NO.S202310752012)


The application of improved U-Net in the image segmentation of pericardial effusion echocardiography
Author:
Affiliation:

Fund Project:

University-Industry Collaborative Education Program(22107040035230);2023 Innovation and Entrepreneurship training program for college students in Ningxia Hui Autonomous Region(NO.S202310752012)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 提出一种改进的U-Net模型自动分割心包积液超声心动图中的积液区域。方法 本文数据集采用GitHub上收集的公开数据集Pericardial-Effusion-experimental-data中的70%作为模型的训练集,30%作为测试集,并采用潍坊医学院附属医院收集的临床数据集作为外部测试集。首先,通过引入多尺度特征提取模块和Dropout2d机制来增强模型的泛化能力和分割精度;其次,在下采样过程中应用LeakyReLU激活函数以提升模型的非线性表达能力;最后,在卷积层中使用反射填充,完善积液区的边界轮廓。结果 所提出的方法用公开测试集和外部测试集进行验证,其准确率、召回率、精确度和F1分数分别是96.97%、91.47%、69.84%、77.34%;98%、52.54%、80.72%、60.86%。证明其具有良好的泛化能力。结论 本文研究为心包积液超声心动图的精准分割提供了一种有效的方法,能够在确保准确率的同时协助医生提升心包积液的诊断效率。

    Abstract:

    Objective: An improved U-Net model is proposed to automatically segment the effusion area in pericardial effusion echocardiography. Method: This article uses 70% of the publicly available dataset Pericardial Effusion experimental data collected on GitHub as the training set, 30% as the testing set, and clinical data collected from the Affiliated Hospital of Weifang Medical College as the external testing set. Firstly, the model"s generalization ability and segmentation accuracy are enhanced by introducing a multi-scale feature extraction module and Dropout2d mechanism; Secondly, the LeakyReLU activation function is applied in the downsampling process to improve the nonlinear representation of the model; Finally, reflection filling is used in the convolution layer to improve the boundary profile of the effusion area. Result:The proposed model was validated on the publicly and external testing set. Their accuracy, recall, precision, and F1 score were 96.97%, 91.47%, 69.84%, and 77.34%; 98%, 52.54%, 80.72%, and 60.86%, demonstrating its good generalization ability. Conclusion: This study provides an effective method for accurate segmentation of pericardial effusion echocardiography, which can help doctors improve the diagnosis efficiency of pericardial effusion while ensuring the accuracy.

    参考文献
    相似文献
    引证文献
引用本文

龚薇,李钟玉,苏振国,宁传永,铁晓烂,孙鹏.改进U-Net在心包积液超声心动图图像分割中的应用[J].临床超声医学杂志,2024,26(12):

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-05-10
  • 最后修改日期:2024-05-10
  • 录用日期:2024-06-11
  • 在线发布日期: 2024-12-31
  • 出版日期:
文章二维码

扫码关注

官方微信