基于二维超声和ARFI图像特征的列线图模型鉴别诊断肝脏肿瘤良恶性的临床价值
DOI:
CSTR:
作者:
作者单位:

武汉大学人民医院

作者简介:

通讯作者:

中图分类号:

基金项目:


Differentiation of benign and malignant liver tumors based on multimodal ultrasound
Author:
Affiliation:

1.Wuhan 430030;2.China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 通过分析患者临床信息及肝脏肿瘤多模态超声图像特征,构建定量诊断列线图模型,以预测肝脏肿瘤恶性概率,为临床决策提供有效参考。方法 回顾性分析82例肝脏肿瘤的患者的常规超声及超声弹性成像技术,监测其常规超声的声像图表现,包括肿瘤的回声、形态、大小、边界、包膜、钙化等;超声弹性成像测量肝脏肿瘤的最大弹性值、最小弹性值、平均弹性值。采用Lasso回归对影响因素进行变量选择,构建Nomogram列线图模型,计算一致性指数(C-index),并绘制该预测模型的校准曲线和临床决策曲线。结果 Lasso回归分析结果显示,肿瘤最大弹性值,病毒性肝炎病史,肿瘤低回声是恶性肿瘤的独立预测因素,将上述因素构建了列阵图模型。该模型C指数为0.98,校准曲线显示该模型具有较好的一致性,临床决策曲线亦显示该模型具有较好的临床适用性。结论 基于多模态超声成像技术建立列线图模型,可以鉴别肝脏肿瘤的良恶性,该方法简单有效,可适用于基层医院对患者肝脏肿瘤的筛查。

    Abstract:

    Objective To construct a quantitative diagnostic nomogram model by analyzing the clinical information of patients and the characteristics of multimodal ultrasound images of liver tumors, so as to predict the malignant probability of liver tumors and provide an effective reference for clinical decision-making. Methods Routine ultrasound and ultrasound elastography of 82 patients with liver tumors were retrospectively analyzed. The ultrasonographic features of routine ultrasound were monitored, including tumor echo, shape, size, boundary, capsule and calcification. The maximum elastic value, minimum elastic value and average elastic value of liver tumor were measured by ultrasound elastography. Lasso regression was used to select the variables of the influencing factors, construct the Nomogram model, calculate the C-index, and draw the calibration curve and clinical decision curve of the prediction model. Results The results of Lasso regression analysis showed that the maximum elasticity of tumor, history of viral hepatitis and tumor hypoecho were independent predictors of malignant tumor, and the matrix model was constructed based on the above factors. The C index of the model was 0.98. The calibration curve showed that the model had good consistency, and the clinical decision curve also showed that the model had good clinical applicability. Conclusions The nomogram model based on multimodal ultrasound imaging technology can distinguish benign and malignant liver tumors. The method is simple and effective, and can be applied to the screening of liver tumors in primary hospitals.

    参考文献
    相似文献
    引证文献
引用本文

徐芬芬,胡玉刚,周燕翔,邓倾,姜楠,王凤娟,周青.基于二维超声和ARFI图像特征的列线图模型鉴别诊断肝脏肿瘤良恶性的临床价值[J].临床超声医学杂志,2025,27(5):

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-04
  • 最后修改日期:2024-07-06
  • 录用日期:2024-07-23
  • 在线发布日期: 2025-05-29
  • 出版日期:
文章二维码

扫码关注

官方微信