SHAP值在XGBoost超声模型中预测直径>1cm甲状腺乳头状癌的价值
DOI:
CSTR:
作者:
作者单位:

1.浙江省杭州市萧山区第三人民医院;2.杭州市第九人民医院;3.西湖大学附属杭州市第一人民医院

作者简介:

通讯作者:

中图分类号:

基金项目:


the value of SHAP value in XGBoost ultrasound model for predicting papillary thyroid carcinoma larger than 1.0 centimeter
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 探讨SHAP值(Shapley additive explanations)在极端梯度提升(extreme gradient boosting, XGBoost)超声模型中预测直径>1cm甲状腺乳头状癌(papillary thyroid carcinoma, PTC)的价值。 方法 回顾分析手术病理证实的138例145枚PTC超声资料,并与127例141枚结节性甲状腺肿(nodular goiter, NG)对照,对超声危险征象赋分后进行χ2检验,将数据以8 : 2的比例随机拆分训练集和测试集,采用XGBoost在训练集上构建模型,测试集中利用受试者操作特征曲线下面积(area under the curve, AUC)值评价模型预测PTC的效能。通过SHAP值进行模型解释,明确各要素诊断PTC的权重。 结果 145枚PTC和141枚NG中,基于边缘模糊/不规则/腺外侵犯、UGSR<0.83、实性、A/T > 1和微钙化这5个要素,XGBoost模型在训练集和测试集中AUC值分别为0.941和0.921。SHAP值对XGBoost模型分析显示,各要素绝对平均SHAP值分别约为0.3~1.3,权重由大到小为UGSR<0.83、实性、边缘模糊/不规则/腺外侵犯、微钙化、A/T > 1,且均为正向贡献。 结论 利用SHAP值对XGBoost超声预测模型分析可对各要素的诊断效能进行量化及可视化,为优化甲状腺结节诊断标准提供一定依据。

    Abstract:

    Objective To investigate the value of Shapley additive explanations (SHAP) in extreme gradient boosting (XGBoost) ultrasound model in predicting papillary thyroid carcinoma (PTC) larger than 1.0 centimeter. Methods The ultrasound data of 138 cases with 145 pieces of pathologically confirmed PTC were analyzed retrospectively and compared with 127 cases with 141 pieces of nodular goiter (NG). The ultrasound risk signs were performed scoring and analyzed by chi-square test. The data were randomly split into a training set and a testing set in the ratio of 8 : 2. XGBoost was used to construct the machine learning model on the training set, and the area under the ROC curve (AUC) of receiver operating characteristic (ROC) was used in the testing set to evaluate the efficacy of the model to predict PTC. Model interpretation was performed through SHAP values to clarify the weight of each ultrasound sign in the diagnosis of PTC. Results Among the 145 PTC and 141 NG, the AUC value of the XGBoost models were 0.941and 0.921 in the training and testing set, respectively, which were based on these 5 signs: fuzzy/irregular margins/extra-glandular invasion、UGSR<0.83、solidity、aspect ratio (A/T) > 1 and microcalcification. The analysis of SHAP values on XGBoost model showed that the mean value of absolute SHAP values of ultrasound signs was from 0.3 to 1.3, and the weights from large to small were UGSR<0.83、solidity、fuzzy/irregular margins/extra-glandular invasion、microcalcification, and A/T > 1. All of them were positive contribution. Conclusion The analysis of the constructed XGBoost prediction model using SHAP values can quantify and visualize the diagnostic efficacy of each sign and provide a certain basis for the improvement of diagnostic criteria for thyroid nodules.

    参考文献
    相似文献
    引证文献
引用本文

钱佳红,谢亚羽,朱翰林,王盼,胡春锋,韩志江. SHAP值在XGBoost超声模型中预测直径>1cm甲状腺乳头状癌的价值[J].临床超声医学杂志,2025,27(3):

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-06-14
  • 最后修改日期:2024-08-21
  • 录用日期:2024-12-24
  • 在线发布日期: 2025-04-02
  • 出版日期:
文章二维码

扫码关注

官方微信