基于多模态超声指标和血清学指标的随机森林模型预测乙型病毒性肝炎相关性高危食管胃底静脉曲张的临床价值
DOI:
CSTR:
作者:
作者单位:

福建医科大学孟超肝胆医院超声医学科

作者简介:

通讯作者:

中图分类号:

基金项目:

福建省自然科学(2022J011285,2023J011480)


Application Value of Random Forest Combined with Multimodal Ultrasound and Serological Indicators in Predicting Hepatitis B-related High-risk Esophageal and Gastric Varices
Author:
Affiliation:

Department of Ultrasound,Mengchao Hepatobiliary Hospital of Fujian Medical University,Fuzhou,Fujian

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 将多模态超声指标与血清学指标相结合,利用随机森林算法,构建无创预测模型,筛选出乙肝相关的高危食管胃底静脉曲张(esophageal gastric variceal,EGV)患者。方法 收集2019年1月至2024年3月于福建医科大学孟超肝胆医院接受内镜检查并行2D-SWE、肝脾超声及相关血清学检查的乙肝患者。通过随机森林算法对变量重要性进行排序,筛选出可显著提升预测效能的指标,构建无创预测模型,命名为USE(ultrasound and serological predict EGV)。将该模型使用SHAP(SHapley Additive exPlanations)进行可视化展示;并且将USE与其他经典无创预测指标:FIB-4, PSR, LSPS, MELD进行预测效能的比较。结果 本研究共纳入317例患者,其中高危EGV患者127例。平均年龄为53.53±12.31岁。重要性排名前十的指标分别为:脾硬度,血小板计数,肌酐,白蛋白,脾厚度,直接胆红素,门静脉流速,谷丙转氨酶,肝脏血流量,脾长径。通过计算,当纳入前七个变量时,构建的USE预测模型即可获得较高的预测效能,AUC(area under curve)可达0.93。USE与其他无创指标相比,具有更高的AUC,更好的提升效果,更准确的预测分布,更佳的利润曲线和更大的累计增益。结论 该模型无创筛选出EGV高危人群,预防及治疗具有重要的临床意义。

    Abstract:

    Objective To construct a non-invasive predictive model for screening patients with hepatitis B-related high-risk esophageal gastric varices (EGV) by combining multimodal ultrasound indicators with serological indicators using the random forest algorithm.Methods Data were collected from hepatitis B patients who underwent endoscopic examination, 2D-SWE, liver and spleen ultrasound, and relevant serological tests at Mengchao Hepatobiliary Hospital of Fujian Medical University from January 2019 to March 2024. The random forest algorithm was employed to rank the importance of variables, selecting those that significantly enhance predictive performance to build a non-invasive predictive model, named USE (Ultrasound and Serological predict EGV). This model was visualized using SHAP (SHapley Additive exPlanations) and compared with other classic non-invasive predictive indicators: FIB-4, PSR, LSPS, and MELD, in terms of predictive performance.Results A total of 317 patients were included in this study, of whom 127 were high-risk EGV patients. The average age was 53.53±12.31 years. The top ten indicators in terms of importance were: spleen stiffness, platelet count, creatinine, albumin, spleen thickness, direct bilirubin, portal vein flow rate, alanine aminotransferase, liver blood flow, and spleen length. By incorporating the top seven variables, the USE predictive model achieved a high predictive performance with an AUC (Area Under the Curve) of 0.93. Compared with other non-invasive indicators, USE demonstrated a higher AUC, better improvement effect, more accurate predictive distribution, superior profit curve, and greater cumulative gain.Conclusion This model provides a non-invasive method for screening high-risk EGV patients, with significant clinical implications for prevention and treatment.

    参考文献
    相似文献
    引证文献
引用本文

冯斯奕,黄玉洁,刘广文,程璟,涂海斌.基于多模态超声指标和血清学指标的随机森林模型预测乙型病毒性肝炎相关性高危食管胃底静脉曲张的临床价值[J].临床超声医学杂志,2025,27(5):

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-08
  • 最后修改日期:2024-10-16
  • 录用日期:2024-10-21
  • 在线发布日期: 2025-05-29
  • 出版日期:
文章二维码

扫码关注

官方微信