基于经颅超声图像特征的Logistic回归模型预测帕金森病的临床价值
DOI:
CSTR:
作者:
作者单位:

陆军特色医学中心超声科

作者简介:

通讯作者:

中图分类号:

基金项目:


Transcranial ultrasound multifactorial combination in the early diagnosis of Parkinson
Author:
Affiliation:

Army Medical Center of PLA

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 探索中脑黑质(substantia nigra,SN)、豆状核(lentiform nucleus,LN)、中缝核(midbrain raphe,BR)经颅超声(transcranial sonography ,TCS)回声变化与早期诊断帕金森病(Parkinson’s disease,PD)的关系。 方法 回顾性分析陆军特色医学中心2020年至2023年就诊的231例患者,所有患者均接受TCS检查,将231例患者分为PD(+)组与PD(-)组,分析其黑质、豆状核、中缝核的回声特点并进行赋值建模。 结果 两组患者性别、临床症状(震颤)比较,差异无统计学意义(P>0.05);年龄、黑质、豆状核、中缝核比较,差异均有统计学意义(P<0.05)。单因素回归分析发现,年龄、黑质、中缝核、豆状核均是诊断为PD的独立相关因素,而性别、临床症状(震颤)不是诊断为PD的独立相关因素。构建了基于上述4个变量的Logistic回归预测模型:Y=-7.338+0.038×Age+0.991×SN+1.765×BR+1.076×LN。并绘制ROC曲线,其AUC值为0.851,达到了中等偏上的预测价值,其敏感度为79.6%、特异度为80.5%、约登指数为0.601,截止值为0.393。基于该模型绘制DCA曲线,在DCA曲线中,几乎在所有阈值概率下,患者均有很大临床获益空间,表明该模型用于PD预测时,患者可有临床净获益。 结论 年龄、黑质、豆状核、中缝核是诊断为PD的独立相关因素,基于这些因素构建的预测模型具有中等偏上的预测价值,用于预测PD时患者具有较好的临床净获益。

    Abstract:

    Purpose To explore the relationship between transcranial sonography (TCS) echo changes in the midbrain substantia nigra (SN), lentiform nucleus (LN), and midbrain raphe (BR) and early diagnosis of Parkinson"s disease (PD). "s disease (PD). METHODS Retrospective analysis of 231 patients seen at the Army Specialty Medical Center from 2020 to 2023, all of whom underwent TCS, divided the 231 patients into PD (+) and PD (-) groups, analyzed the echogenic characteristics of the substantia nigra, the nucleus pulposus, and the nucleus of the median suture, and performed assignment modeling. Results Comparison of gender and clinical symptoms (tremor) between the two groups showed no statistically significant difference (P > 0.05); comparison of age, substantia nigra, nucleus pulposus, and nucleus of the middle suture showed statistically significant differences (P < 0.05). One-way regression analysis revealed that age, substantia nigra, nucleus accumbens, and nucleus pulposus were independent correlates of the diagnosis of PD, whereas gender and clinical symptoms (tremor) were not independent correlates of the diagnosis of PD. A logistic regression prediction model based on the above four variables was constructed: Y=-7.338+0.038×Age+0.991×SN+1.765×BR+1.076×LN. and the ROC curve was plotted, with an AUC value of 0.851, which attained a moderately high predictive value, and a sensitivity of 79.6%, specificity of 80.5%, and an approximate Den index of 0.601, and a cutoff value of 0.393. DCA curves were plotted based on this model, and in the DCA curves, there was room for a large clinical benefit for patients at almost all threshold probabilities, suggesting that there can be a net clinical benefit for patients when this model is used for PD prediction. Conclusion Age, substantia nigra, nucleus pulposus, and nucleus intermedius are independent correlates of the diagnosis of PD, and the prediction model constructed on the basis of these factors has a moderately high predictive value, and the patients have a good net clinical benefit when used for the prediction of PD.

    参考文献
    相似文献
    引证文献
引用本文

周紫薇,方靖琴,胡加银,田优幽,蒙云,李陶.基于经颅超声图像特征的Logistic回归模型预测帕金森病的临床价值[J].临床超声医学杂志,2025,27(2):142-146

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-03
  • 最后修改日期:2024-11-22
  • 录用日期:2024-11-26
  • 在线发布日期: 2025-03-04
  • 出版日期:
文章二维码

扫码关注

官方微信