基于超声纹理特征与基于超声造影的预测模型对直径≤2cm乳腺结节风险分层的诊断价值比较
DOI:
CSTR:
作者:
作者单位:

1.陆军军医大学大坪医院超声科;2.重庆大学附属三峡医院超声科

作者简介:

通讯作者:

中图分类号:

基金项目:

大坪医院-多模态超声对Bl-RADS4类乳腺肿块分级诊断及预后评估(基金编号:ZXZYTSLC07);重庆自然科学基金(基金编号: cstc2021jcyj-msxmX0230);


Comparison of Diagnostic Performance of Prediction Models Based on Ultrasound Texture Features and Contrast-Enhanced Ultrasound for Risk Stratification of Breast Nodules with Diameter ≤ 2 cm
Author:
Affiliation:

ultrasound Department, Daping Hospital, Army Military Medical University

Fund Project:

Projectof Daping Hospital -Multimodal ultrasound in Bl-RADS category 4 breast massgrading diagnosis and prognostic assessment of breast cancer (Grant Number.ZXZYTSLC07),and Natural Science Foundation of Chongqing, China(GrantNumber: cstc2021jcyj-msxmX0230).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要 目的 比较基于二维超声纹理特征(2D-Ultrasomics)的预测模型与基于超声造影(CEUS)的预测模型对直径≤2 cm乳腺良、恶性结节的鉴别诊断价值。方法 选取于我院接受二维超声及彩色多普勒(2D-CDUS)和CEUS检查的乳腺结节患者109例(共112个结节),依据病理结果分为良性组58个和恶性组54个,比较两组二维超声、CEUS图像特征;基于二维超声图像提取2D-Ultrasomics,使用最小绝对收缩和选择算子(LASSO)进行特征筛选。采用多因素Logistic回归分别构建2D-CDUS模型、二维超声及彩色多普勒结合超声造影(2D-CD+CEUS)模型及二维超声及彩色多普勒结合超声纹理特征(2D-CDUS+Ultrasomics)模型,绘制受试者工作特征(ROC)曲线评估各模型对直径≤2 cm乳腺良、恶性结节的诊断效能;Hosmer-Lemeshow检验评估模型的拟合度;临床决策曲线评估模型的临床适用性。结果 两组2D-CDUS图像特征(回声、边界、血流、短径)和CEUS图像特征(增强方式、增强时相、造影边界、增强均匀性、增强病灶范围)比较,差异均有统计学意义(均P<0.05)。共提取818个2D-Ultrasomics,经过LASSO筛选后保留6个特征。本研究分别构建了三种模型 2D-CDUS模型(纳入变量为边界、短径),2D-CDUS+CEUS模型(纳入变量为边界、短径、造影边界变量),以及2D-CDUS+Ultrasomics模型(纳入变量为短径、灰度游程长度矩阵、灰度依赖矩阵、灰度大小区矩阵)。ROC曲线分析显示,2D-CDUS+Ultrasomics模型鉴别直径≤2 cm乳腺良、恶性结节的AUC最高(0.917),显著高于2D-CD+CEUS模型及2D-CDUS模型(0.892、0.823),且2D-CD+CEUS模型的AUC高于2D-CDUS模型,差异均有统计学意义(均P<0.001)。Hosmer-Lemeshow检验显示,2D-CDUS模型、2D-CD+CEUS模型和2D-CDUS+Ultrasomics模型均具有良好的拟合度(P=0.818、0.103、0.281)。临床决策曲线分析显示,2D-CDUS+Ultrasomics模型在0.20~0.39、0.43~0.78及0.88~0.91阈值区间均具有最高的临床获益。结论 基于2D-Ultrasomics的预测模型较基于CEUS的预测模型能准确地鉴别直径≤2 cm乳腺良、恶性结节,有助于乳腺小结节早期准确诊断和治疗决策制定。 关键词 超声检查;造影剂;纹理特征;乳腺结节;良恶性

    Abstract:

    Abstract Objective: To compare the diagnostic value of predictive models based on two-dimensional ultrasound texture features (2D-Ultrasomics) and contrast-enhanced ultrasound (CEUS) for distinguishing benign and malignant breast nodules ≤2 cm in diameter. Methods: A total of 109 patients (112 nodules) with breast nodules who underwent 2D-CDUS and CEUS at our hospital were included. Based on pathological results, the patients were divided into benign (58 nodules) and malignant (54 nodules) groups. The 2D-CDUS and CEUS image features were compared between the groups. 2D-Ultrasomics features were extracted from 2D ultrasound images, followed by feature selection using the Least Absolute Shrinkage and Selection Operator (LASSO). Multivariable logistic regression was used to construct three models: 2D-CDUS, 2D-CDUS combined with CEUS (2D-CD+CEUS), and 2D-CDUS combined with ultrasound texture features (2D-CDUS+Ultrasomics). Receiver Operating Characteristic (ROC) curves were drawn to assess the diagnostic efficacy of each model for distinguishing benign and malignant breast nodules ≤2 cm. The Hosmer-Lemeshow test was used to evaluate model fit, and clinical decision curve analysis was performed to assess the clinical applicability of the models. Results: The comparison of 2D-CDUS (echogenicity, boundary, blood flow, width) and CEUS (enhancement pattern, phase, boundary, uniformity, and lesion range) image features between the two groups showed statistically significant differences (all P <0.05). A total of 818 2D-Ultrasomics features were extracted, with 6 retained after LASSO selection. Three models were constructed: the 2D-CDUS model (based on boundary and width), the 2D-CDUS+CEUS model (based on boundary, width, and contrast boundary), and the 2D-CDUS+Ultrasomics model (based on width, gray-level run length matrix, gray-level dependence matrix, and gray-level size zone matrix). ROC analysis revealed the 2D-CDUS+Ultrasomics model had the highest AUC (0.917) for distinguishing benign and malignant nodules ≤2 cm, significantly higher than the 2D-CD+CEUS model (0.892) and the 2D-CDUS model (0.823) (all P < 0.001). The Hosmer-Lemeshow test showed a good model fit for all three models (P = 0.818, 0.103, 0.281). Clinical decision curve analysis showed the 2D-CDUS+Ultrasomics model provided the highest clinical benefit in the thresholds of 0.20–0.39, 0.43–0.78, and 0.88–0.91. Conclusion: The 2D-Ultrasomics-based predictive model can more accurately distinguish between benign and malignant breast nodules ≤2 cm in diameter compared to the CEUS-based predictive model, thereby aiding in the early and accurate diagnosis of small breast nodules and facilitating treatment decision-making. Keywords: Ultrasound examination; Contrast agent; Texture features; Breast nodules; Benign or malignant

    参考文献
    相似文献
    引证文献
引用本文

刘博雅,方靖琴,姚晓静,杜鹏,黄鑫,李陶.基于超声纹理特征与基于超声造影的预测模型对直径≤2cm乳腺结节风险分层的诊断价值比较[J].临床超声医学杂志,2025,27(1):10-17

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-14
  • 最后修改日期:2024-12-04
  • 录用日期:2024-11-04
  • 在线发布日期: 2025-02-07
  • 出版日期:
文章二维码

扫码关注

官方微信