基于多模态超声参数构建前列腺癌预测模型
DOI:
CSTR:
作者:
作者单位:

1.南通大学第二附属医院 超声科;2.南通大学第二附属医院 泌尿外科

作者简介:

通讯作者:

中图分类号:

基金项目:


Construction of the prediction model for prostate cancer based on multimodal ultrasound parameters
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 构建基于多模态超声参数的前列腺癌预测模型。方法? 选取2023年1月-2024年5月在南通大学第二附属医院收治的疑似前列腺癌(PCa)患者180例作为模型组,均行经直肠多模态超声检查(二维超声、彩色多普勒超声、弹性成像和超声造影)以及穿刺活检,根据病理结果分为PCa组(n=93)和非PCa组(n=87),记录多模态超声参数及临床一般资料,多因素Logisitc回归分析具有意义的因素,并建立PCa预测模型,Hosmer-Lemeshow检验评估模型拟合度,受试者工作曲线(ROC)检测该模型的预测效能。另选取2024年6月~8月收治的32例疑似PCa患者作为验证组进行外部验证。结果 PCa组血清前列腺特异性抗原(PSA)、前列腺抗体密度(PSAD)水平高于非PCa组(P<0.05)。PCa组二维灰阶超声和彩色多普勒超声阳性率高于非PCa组;PCa组SWE参数(Emax、Emean、Emin)和超声造影参数(峰值强度、强度差、单位时间绝对增强强度)值均高于非PCa组(P<0.05)。多因素Logisitc回归分析显示,血清PSAD水平、超声剪切波弹性成像(SWE)参数-Emax和超声造影参数-强度差为PCa的独立预测因子(P<0.05)。PCa预测模型概率P=1/[1+e( -10.369+1.134 ×(血清PSAD)+×1.359(Emax)+1.089 ×(强度差)],Hosmer-Lemeshow χ2=3.696,P=0.883,ROC曲线分析显示,该PCa预测模型的曲线下面积(AUC)为0.951,95%CI为0.929~0.974(P<0.05),外部验证ROC曲线分析显示,AUC为0.932,95%CI为0.876~0.988(P<0.05)。结论 血清PSAD水平、SWE参数-Emax和超声造影参数-强度差均是预测PCa的独立预测因子,基于以上因素构建预测模型,可有效为临床诊断提供指导。

    Abstract:

    Objective To construct the prediction model of prostate cancer (PCa) based on multimodal ultrasound parameters. Methods A total of 180 patients with suspected PCa inSecond Affiliated Hospital of Nantong University were enrolled as model group between January 2023 and May 2024. All patients underwent transrectal multimodal ultrasonography (two-dimensional ultrasound, color Doppler ultrasound, elastography, contrast-enhanced ultrasound) and puncture biopsy. According to pathological results, patients were divided into PCa group (n=93) and non-PCa group (n=87). The multimodal ultrasound parameters and general clinical data were recorded, and the significant factors were analyzed by multivariate Logisitc regression analysis. The prediction model of PCa was constructed, fit of the model was evaluated by Hosmer-Lemeshow test, and its predictive efficiency was detected by receiver operating characteristic (ROC) curves. A total of 32 patients with suspected PCa were enrolled as validation group for external verification between June and August 2024. Results The levels of serum prostate specific antigen (PSA) and prostate antibody density (PSAD) in PCa group were higher than those in non-PCa group (P<0.05). The positive rates of two-dimensional gray scale ultrasound and color Doppler ultrasound in PCa group were higher than those in non-PCa group, SWE parameters (Emax, Emean, Emin) and contrast-enhanced ultrasound parameters (peak intensity, intensity difference, absolute enhancement intensity per unit time) were also higher than those in non-PCa group (P<0.05). Multivariate Logisitc regression analysis showed that serum PSAD, Emax and intensity difference were independent predictors of PCa (P<0.05). The probability of PCa by prediction model was as follow: P=1/[1+e(-10.369+1.134 ×(serum PSAD)+ 1.359×(Emax)+1.089 ×(intensity difference)], Hosmer-Lemeshow χ2=3.696, P=0.883. ROC curves analysis showed that area under the curve (AUC) and 95%CI of the prediction model and external verification were (0.951, 0.929-0.974) and (0.932, 0.876-0.988), respectively (P<0.05). Conclusion Serum PSAD, Emax and intensity difference are independent predictors of PCa. The prediction model based on the above factors can effectively provide guidance for clinical diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

周隽,郑兵.基于多模态超声参数构建前列腺癌预测模型[J].临床超声医学杂志,2025,27(3):

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-04
  • 最后修改日期:2024-11-27
  • 录用日期:2024-12-02
  • 在线发布日期: 2025-04-02
  • 出版日期:
文章二维码

扫码关注

官方微信