基于经会阴盆底超声参数及超声影像组学的联合模型预测产后发生盆腔脏器脱垂的临床价值
DOI:
CSTR:
作者:
作者单位:

1.南方医科大学南方医院增城院区超声诊断科;2.南方医科大学南方医院影像中心

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on the prediction of postpartum pelvic organ prolapse using a combined clinical and radiomics model based on pelvic floor ultrasound
Author:
Affiliation:

1.Department of Medical Ultrasonics, Nanfang Hospital Zengcheng Campus, Southern Medical University;2.Imaging Center of Nanfang Hospital, Southern Medical University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 探讨基于经会阴盆底超声(TPFU)的临床与影像组学联合模型对产后盆腔脏器脱垂(POP)的预测价值。方法 回顾性分析南方医科大学南方医院增城院区2024年1月~2024年8月331例初产妇及经产妇(即受试者)的病历资料、肛提肌裂孔(LH)盆底超声测量数据及LH盆底超声图像,根据POP-Q诊断标准将其分为POP组(266例)和非POP组(65例)。将331例受试者的病历信息与LH超声测量值构建临床模型。另外在TPFU图像中手动勾画感兴趣区域(ROI),即LH区域,然后进行影像组学特征提取和特征筛选,将筛选出的特征构建影像组学模型。最后采用逻辑回归将筛选出的临床特征与影像组学特征构建联合模型。结果 在临床模型中,表现最佳的模型是随机森林(RF)模型,其训练集与测试集的AUC分别是0.845和0.820。在影像组学模型中,表现最优的模型也是RF模型,其训练集与测试集的AUC分别是0.865和0.831。联合模型的训练集与测试集AUC分别是0.897和0.856,均高于临床模型和影像组学模型。结论 联合模型能够更好地预测POP的发生,为临床尽早进行POP的干预和治疗提供依据。

    Abstract:

    Objective To exploring the predictive value of a clinical and radiomics combined model based on transperineal pelvic floor ultrasound (TPFU) for postpartum pelvic organ prolapse (POP). Methods The retrospective analysis was conducted on the medical records, measurement data of the levator?hiatus (LH) pelvic floor ultrasound, and LH pelvic floor ultrasound images of 331 ?primiparous and multiparous women (participants) in Nanfang Hospital Zengcheng Campus of Southern Medical University from January 2024 to August 2024. According to the POP-Q diagnostic criteria, they were divided into POP group (266 cases) and non POP group (65 cases). Construct a clinical model by combining the medical records of 331 participants with LH ultrasound measurements. In addition, manually delineate the region of interest (ROI) in TPFU images, which is the LH region. Then perform radiomics feature extraction and feature screening, and construct an radiomics model based on the selected features. Finally, the selected clinical features and radiomics features will be combined using logistic regression to construct a combined model. Results In clinical models, the best performing model is the RandomForest(RF) model, with AUC of 0.845 and 0.820 for the training and testing sets, respectively. In the radiomics models, the best performing model is also the RF model, with AUC of 0.865 and 0.831 for the training and testing sets, respectively. The AUC of the training and testing sets of the combined model were 0.897 and 0.856, respectively, which were higher than those of the clinical model and the radiomics model.Conclusion The combined model can better predict the occurrence of POP, providing a basis for early intervention and treatment of POP in clinical practice.

    参考文献
    相似文献
    引证文献
引用本文

黄丽华,周煜皓,文戈.基于经会阴盆底超声参数及超声影像组学的联合模型预测产后发生盆腔脏器脱垂的临床价值[J].临床超声医学杂志,2025,27(5):

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-04
  • 最后修改日期:2025-02-04
  • 录用日期:2025-02-08
  • 在线发布日期: 2025-05-29
  • 出版日期:
文章二维码

扫码关注

官方微信