·临床研究·

超声影像组学在肝包虫病分型中的应用研究

张旭辉 索朗拉姆 邱甲军 任叶蕾 王逸非 卢 强 李永忠 蔡迪明

要 目的 基于超声影像组学构建机器学习模型,探究其在鉴别囊型肝包虫病与泡型肝包虫病中的应用价 摘 值。**方法** 选取于我院及四川省甘孜藏族自治州石渠县经病理结果(金标准)或"四川省包虫病专家组"依据临床结果及 专家共识(银标准)确诊的肝包虫病患者4976例,共纳入23452张超声图像,其中囊型肝包虫病图像8557张,泡型肝包虫 病图像14895张。按病灶类型以8:2比例将超声图像随机分为训练集18762张与独立测试集4690张。使用Pyradiomics (3.1.0)提取超声图像的影像组学特征,对训练集及独立测试集超声图像均使用相同的提取器;使用极小化极大、标准分 数及均值方法对影像组学特征进行特征缩放,使用主成分分析和Pearson相关系数进行特征降维,使用方差分析、递归特 征消除、相关特征法及克鲁斯卡尔-沃利斯法筛选最佳影像组学特征。基于支持向量机(SVM)、自编码器(AE)、线性判 别分析(LDA)、随机森林(RF)、逻辑回归(LR)、自适应增强(AB)、决策树(DT)、朴素贝叶斯(NB)8种分类器构建鉴别肝 包虫病分型的最佳机器学习模型。训练集中,以十折交叉验证策略训练模型。绘制受试者工作特征(ROC)曲线分析不 同分类器中最佳机器学习模型在训练集及独立测试集中鉴别肝包虫病分型的诊断效能。结果 从每张超声图像中共提 取1130个影像组学特征,经特征选择动态筛选出1~40个最佳影像组学特征,并以此建立最佳机器学习模型。ROC曲线 分析显示,RF模型在训练集及独立测试集中鉴别肝包虫病分型的曲线下面积分别为0.82、0.86、均高于SVM、AE、LDA、 LR、AB、DT、NB模型,差异均有统计学意义(均P<0.05)。结论 基于超声影像组学的RF模型对鉴别肝包虫病分型的诊 断效能最佳,有助于肝包虫病精准超声诊断。

关键词 超声检查;影像组学;肝包虫病;分型;机器学习 [中图法分类号]R445.1;R532.32 [文献标识码]A

Application of ultrasound radiomics in the classification of hepatic echinococcosis

ZHANG Xuhui, SUOLANG Lamu, QIU Jiajun, REN Yelei, WANG Yifei, LU Qiang, LI Yongzhong, CAI Diming Department of Ultrasound Medical, West China Hospital, Sichuan University, Chengdu 610041, China

ABSTRACT Objective To construct a machine learning model based on ultrasound radiomics, and to explore the application value in the differentiating cystic echinococcosis and alveolar echinococcosis. **Methods** A total of 4976 patients diagnosed with hepatic echinococcosis in our hospital and Shiqu county, Ganzi tibetan autonomous prefecture, Sichuan province according to pathological results (gold standard) or diagnosed by the "Sichuan Province Echinococcosis Expert Group" based on clinical outcomes and expert consensus (silver standard) were selected, including a total of 23 452 ultrasound images, with 8557 images of cystic echinococcosis and 14 895 images of alveolar echinococcosis. The ultrasound images were randomly divided into training set (18 762 images) and independent test set (4690 images) in a 8:2 ratio according to the lesion type. Pyradiomics (3.1.0) was used to extract radiomic features from ultrasonographic images, and the same extractor was applied for the ultrasonic images of the training set and the independent test set. MinMax, Z-score and Mean methods were used for feature scaling of radiomic features. Principal component analysis and Pearson correlation coefficient were used for feature dimensionality reduction, and analysis of variance, recursive feature elimination, relevant features, as well as the Kruskal–Wallis methods were used to screen the best image radiomic features. The machine learning models were constructed based on 8 classifiers, including

· 353 ·

基金项目:国家卫生健康委包虫病防治研究重点实验室开放课题(2021WZK1002)

作者单位:610041 成都市,四川大学华西医院超声医学科(张旭辉、任叶蕾、王逸非、卢强、李永忠、蔡迪明),华西生物医学大数据中心(邱甲军); 西藏自治区疾病预防控制中心(索朗拉姆)

通讯作者:蔡迪明, Email: doccai@163.com

support vector machine (SVM), auto-encoder (AE), linear discriminant analysis (LDA), random forest (RF), Logistic regression (LR), adaptive boosting (AB), decision tree (DT) and naive Bayes (NB). In the training set, a ten-fold cross-validation strategy was employed to train the model. Receiver operating characteristic (ROC) curve was drawn to analyze the diagnostic performance of the best machine learning model in different classifiers in the training set and the independent test set in differentiating the classification of hepatic echinococcosis. **Results** A total of 1130 radiomic features were extracted from each ultrasonic image, and 1~40 optimal radiomic features were dynamically selected by feature selection to establish the optimal machine learning models. ROC curve analysis showed that the area under the curve of RF model for the classification of hepatic echinococcosis in the training and independent test sets were 0.82 and 0.86, respectively, which were higher than those of the SVM, AE, LDA, LR, AB, DT and NB models, and the differences were statistically significant (all *P*<0.05). **Conclusion** The RF model based on ultrasound radiomics demonstrates the optimal diagnostic efficacy in differentiating the classification of hepatic echinococcosis , which is helpful for the precise ultrasound diagnosis of the disease.

KEY WORDS Ultrasonography; Radiomics; Hepatic echinococcosis; Classification; Machine learning

包虫病是由棘球绦虫引起的人畜共患疾病,其中 以细粒棘球绦虫(E.granulosus)和多房棘球绦虫(E. multilocularis)最为常见,主要引起肝脏感染,可分别引 起囊型肝包虫病(cystic echinococcosis, CE)和泡型肝 包虫病(alveolar echinococcosis, AE)。我国西部是CE 和AE的流行地区,发病率分别为6.8%和6.2%^[1]。CE 囊肿可破裂,引起发热、荨麻疹、播散甚至过敏性休克 等症状,也可对门静脉、肝静脉或下腔静脉等造成压 迫或占位效应,从而引起门静脉高压及静脉梗阻;AE 呈进行性浸润和增生,具有类似恶性肿瘤的转移性生 长特点,患者临床表现可能与肝细胞癌相似,病死率 超过90%^[2]。故应在相对早期阶段进行准确分型并采 取恰当的治疗措施。但在肝包虫病的早期阶段(感染 后10~15年)患者常无明显症状。由于长时间的潜伏 和浸润性生长,部分肝包虫病患者在最终确诊时已失 去手术机会。AE患者常由于误诊而接受了错误的治 疗,而CE患者则常被过度治疗^[3]。因此,准确识别CE 与AE非常重要。影像组学可从原始图像中挖掘潜在 数据,用于精确诊断和治疗[4-5]。机器学习算法为肝包 虫病的准确鉴别提供了新的方法。本研究基于超声 影像组学构建机器学习模型,探究其在鉴别CE与AE 中的应用价值。

资料与方法

一、研究对象

选取 2005 年 1 月至 2022 年 12 月于我院及四川省 甘孜藏族自治州石渠县经病理结果(金标准)或"四川省 包虫病专家组"依据临床结果及专家共识(银标准)^[6-7] 确诊的肝包虫病患者 4976 例,男 2157 例,女 2819 例, 年龄 8~95 岁,中位年龄 43.0(25.0)岁;其中 CE 患者 1641例,AE患者2981例,混合型患者354例。共6466个 病灶,最大径0.5~32.6 cm,中位最大径6.8(5.2) cm。 共纳入超声图像23 452 张,其中CE 超声图像8557 张, AE 超声图像14 895张。"四川省包虫病专家组"按照 《肝两型包虫病诊断与治疗专家共识(2019版)》[6]及 AE 超声分型标准(EMUC-US)^[8],将患者超声表现为 单囊型(CE1)、多子囊型(CE2)、内囊破裂型(CE3)、 实变型(CE4)及钙化型(CE5)特征的病灶诊断为CE, 将患者超声表现为暴风雪型、伪囊型、类血管瘤型、 骨化型及类转移瘤型特征的病灶诊断为AE。以"四 川省包虫病专家组"根据肝包虫病超声表现结合患 者病史、血清学结果及其他影像学资料作为最终诊 断及分型依据。超声图像纳入标准:①具备CE或AE 典型超声图像特征:②灰阶超声图像:③病灶内无血 流信号的 CDFI 图像。超声图像排除标准:①无诊断 意义的超声图像(不含病灶及不典型病灶);②病灶 内有血流信号的 CDFI 图像;③图像质量差;④含标 记、测量线等影响计算机识别的超声图像。本研究 经我院生物医学伦理审查委员会审核批准(批准号: 2023-1811),所有研究工作均符合相关涉及人体研 究的伦理要求。

二、模型构建流程

模型构建流程包括图像采集及分割(手动勾画感 兴趣区并分割)、特征提取、特征选择(动态选择最佳 特征)、模型训练及测试,具体如下。

(一)图像采集及分割

图像采集使用百胜 MyLab TMX7(AC2541 腹部 凸阵探头,频率1~8 MHz)、Philips CX50(C5-2 腹部 凸阵探头,频率2~5 MHz)、迈瑞Z60(C6-2P 腹部凸 阵探头,频率2~6 MHz)、GE Logiq E9(C1-5-RS 腹部 凸阵探头,频率1.5~5.0 MHz)、西门子 Acuson Sequoia (5C1腹部凸阵探头,频率1~5 MHz)彩色多普勒超 声诊断仪。由6名经过图像勾画训练的肝包虫病专 家使用 PLAINlabel 软件对纳入的每张超声图像进行 病灶轮廓勾画,勾画完毕后将数据文件均以 JPG 格 式存盘。病灶轮廓勾画要求:对于边界不清晰的病 灶,勾画病灶的最外缘;若病灶过大超出成像范围 或存在声影或后方回声增强,仅勾画病灶本身;多 个病灶图像按照病灶间的相对位置进行勾画,若多 个病灶不相邻则仅勾画最大径最大的病灶,若多个 病灶相邻则将多个相邻病灶当作1个病灶进行勾 画。见图1。

A、D:CE病灶(CE2型)及其轮廓勾画示意图;B、E:AE病灶(伪囊型)及其轮廓勾画示意图;C、F:AE病灶(类转移瘤型)及其轮廓勾画示意图 图1 肝包虫病各分型病灶及其轮廓勾画示意图

(二)超声影像组学分析

1.数据集划分及特征提取:按病灶类型以8:2比 例将超声图像随机分为训练集与独立测试集。训练 集中,使用十折交叉验证策略训练机器学习模型,将 训练集图像分为10份,然后将每一份作为交叉验证 集,其余作为训练集进行模型训练。使用Pyradiomics (3.1.0)提取超声图像的影像组学特征,训练集及独立 测试集超声图像均使用相同的提取器^[9]。使用的特征 提取方法包括:一阶统计量、形状、灰度共生矩阵、灰度 行程矩阵、灰度区域大小矩阵、邻域灰度差矩阵、灰度依 赖矩阵;使用的图像变换方法包括:小波变换、拉普拉斯 变换、对数变换、指数变换及梯度变换。

2.数据预处理及特征选择:使用极小化极大 (MinMax)、标准分数(Z-score)及均值(Mean)方法对 影像组学特征进行特征缩放,以达到数据的归一化, 并提高数据的可比较性。为了减少特征数便于后续 特征筛选和模型构建,同时尽可能保留关键信息,使 用主成分分析(PCA)和Pearson相关系数(PCC)进行 特征降维。本研究中,PCA的阈值为0.99,PCC的阈值 为0.90。在特征筛选阶段,使用方差分析(ANOVA)、 递归特征消除(RFE)、相关特征法(Relief)及克鲁斯卡 尔-沃利斯法(KW)筛选方法选择与标签数据最佳的 影像组学特征。

3.模型构建:基于不同的数据预处理及特征筛选 方法,使用8种分类器构建鉴别肝包虫病分型的机器 学习模型,包括支持向量机(SVM)、自编码器(AE)、线 性判别分析(LDA)、随机森林(RF)、逻辑回归(LR)、自 适应增强(AB)、决策树(DT)、朴素贝叶斯(NB)。模型 构建使用的软件有:Python 3.7.9语言、FeAture Explorer 0.5.7软件^[10]。

三、统计学处理

应用 Python 3.7.9、R 4.2.2 语言,绘制受试者工作 特征(ROC)曲线分析不同分类器中最佳机器学习模型 在训练集及独立测试集中鉴别肝包虫病分型的诊断 效能,曲线下面积(AUC)比较采用 Delong检验。P<0.05 为差异有统计学意义。

结 果

一、训练集与独立测试集临床资料

训练集18762张,独立测试集4690张,其中训练 集中CE超声图像6846张,AE超声图像11916张;独立 测试集中CE超声图像1711张,AE超声图像2979张。 训练集与独立测试集临床资料见表1。

二、超声影像组学分析

对每张超声图像使用相同的提取器提取影像组 学特征,共提取1130个影像组学特征。使用每一种特

表1 训练集与独立测试集临床资料

数据集	诊断标准(例)		分型(例)		病灶数(个)		图片数(张)		一般资料		病灶数(个)		病灶最大径	
	金标准	银标准	CE	AE	混合型	CE	AE	CE	AE	年龄(岁)	男/女(例)	单发	多发	(cm)
训练集	1034	2630	1117	2240	307	1744	2898	6846	11 916	42.0(26.0)	1647/2017	3388	1254	5.8(5.5)
独立测试集	370	942	524	741	47	734	1090	1711	2979	43.0(25.0)	510/802	1234	590	6.8(5.6)

CE:囊型肝包虫病;AE:泡型肝包虫病

征筛选方法动态选择1~40个影像组学特征。基于不 同的数据预处理、特征降维及特征筛选方法,通过使 用不同的分类器,共构建了7680个机器学习模型以评 估肝包虫病患者的诊断分型。根据训练集中最高 AUC及1-标准误(1-SE)原则,挑选每一类分类器中的 最佳机器学习模型。SVM中,使用MinMax进行数据 归一化,使用PCA进行特征降维,使用RFE进行特征 筛选,共筛选出37个特征;AE中,使用Z-score进行数 据归一化,使用PCC进行特征降维,使用RFE进行特 征筛选,共筛选出27个特征;LDA中,使用Mean进行 数据归一化,使用PCA进行特征降维,使用RFE进行 特征筛选,共筛选出39个特征;RF中,使用Mean进行 数据归一化,使用PCC进行特征降维,使用Relief进行 特征筛选,共筛选出32个特征;LR中,使用MinMax进 行数据归一化,使用PCA进行特征降维,使用RFE进 行特征筛选,共筛选出32个特征;AB中,使用Mean进 行数据归一化,使用PCC进行特征降维,使用RFE进 行特征筛选,共筛选出33个特征;DT中,使用MinMax 进行数据归一化,使用PCC进行特征降维,使用RFE 进行特征筛选,共筛选出30个特征;NB中,使用 MinMax进行数据归一化,使用PCA进行特征降维,使 用RFE进行特征筛选,共筛选出31个特征。不同分类

器中最佳机器学习模型的建模参数见表2。

表2 不同分类器中最佳机器学习模型的建模参数

	- 113/3/			
分类器	归一化	特征降维	特征筛选	特征数(个)
SVM	MinMax	PCA	RFE	37
AE	Z-score	PCC	RFE	27
LDA	Mean	PCA	RFE	39
RF	Mean	PCC	Relief	32
LR	MinMax	PCA	RFE	32
AB	Mean	PCC	RFE	33
DT	MinMax	PCC	RFE	30
NB	MinMax	PCA	RFE	31

MinMax:极小化极大;Z-score:标准分数;Mean:均值;PCA:主成分分析;PCC:Pearson相关系数;RFE:递归特征消除;Relief:相关特征法

三、不同分类器中最佳机器学习模型分别在训练 集及独立测试集中鉴别肝包虫病分型的诊断效能

不同分类器中最佳机器学习模型分别在训练集 及独立测试集中鉴别肝包虫病分型的诊断效能见表3,4。 RF模型在训练集及独立测试集中鉴别肝包虫病分型 的AUC分别为0.82、0.86,均高于其他模型,差异均有 统计学意义(均P<0.05)。用于RF建模的32个影像组 学特征见表5。根据1-SE原则,RF模型在训练集及独 立测试集中的归一化、特征降维、特征筛选方法及影 像组学特征数的选择见图2。RF模型在训练集及独 立测试集中鉴别肝包虫病分型的ROC曲线图见图3。

表3 不同分类器中最佳机器学习模型在训练集中鉴别肝包虫病分型的诊断效能

分类器	灵敏度及其95% 可信区间	特异度及其95% 可信区间	准确率及其95% 可信区间	AUC 及其 95% 可信区间	阳性预测值及其95% 可信区间	阴性预测值及其95% 可信区间
RF	0.71(0.70~0.72)	0.76(0.75~0.76)	0.73(0.73~0.75)	0.82(0.81~0.83)	0.84(0.83~0.85)	0.60(0.59~0.60)
SVM	0.75(0.73~0.76)	0.64(0.63~0.66)	0.70(0.69~0.71)	0.76(0.75~0.77)	0.69(0.68~0.71)	0.70(0.68~0.72)
AE	0.74(0.73~0.76)	0.68(0.66~0.69)	0.71(0.70~0.72)	0.78(0.77~0.79)	0.72(0.70~0.73)	0.71(0.69~0.72)
LDA	0.74(0.73~0.76)	0.64(0.63~0.66)	0.69(0.68~0.70)	0.76(0.75~0.77)	0.69(0.68~0.71)	0.70(0.68~0.71)
LR	0.73(0.72~0.75)	0.65(0.63~0.67)	0.69(0.68~0.71)	0.76(0.75~0.77)	0.70(0.68~0.71)	0.69(0.68~0.71)
AB	0.74(0.73~0.76)	$0.66(0.64 \sim 0.67)$	0.70(0.69~0.71)	0.77(0.76~0.78)	0.70(0.69~0.72)	0.70(0.69~0.72)
DT	0.65(0.63~0.66)	0.58(0.57~0.60)	0.62(0.61~0.63)	0.62(0.60~0.63)	0.63(0.61~0.65)	0.60(0.59~0.62)
NB	0.65(0.64~0.67)	0.65(0.63~0.67)	0.65(0.64~0.66)	0.71(0.70~0.73)	0.67(0.65~0.69)	0.63(0.62~0.65)

AUC:曲线下面积

•	357	•
---	-----	---

表4 不同分类器中最佳机器学习模型在独立测试集中鉴别肝包虫病分型的诊断效能

分类器	灵敏度及其95% 可信区间	特异度及其95% 可信区间	准确率及其95% 可信区间	AUC及其95% 可信区间	阳性预测值及其95% 可信区间	阴性预测值及其95% 可信区间
RF	0.62(0.61~0.62)	0.89(0.88~0.90)	0.76(0.75~0.79)	0.86(0.84~0.87)	0.84(0.83~0.85)	0.71(0.70~0.72)
SVM	0.75(0.72~0.78)	0.68(0.65~0.71)	0.71(0.69~0.73)	0.79(0.77~0.81)	0.69(0.66~0.72)	0.74(0.71~0.77)
AE	0.80(0.77~0.83)	0.71(0.68~0.74)	0.75(0.73~0.78)	0.83(0.81~0.85)	0.73(0.70~0.76)	0.79(0.76~0.82)
LDA	0.76(0.73~0.79)	0.67(0.64~0.71)	0.72(0.69~0.74)	0.79(0.77~0.82)	0.69(0.66~0.72)	0.74(0.71~0.77)
LR	0.73(0.70~0.76)	0.67(0.64~0.70)	0.70(0.68~0.72)	0.79(0.76~0.81)	0.68(0.65~0.71)	0.72(0.69~0.75)
AB	0.73(0.70~0.76)	0.67(0.64~0.71)	0.70(0.68~0.72)	0.79(0.76~0.81)	0.68(0.65~0.71)	0.72(0.69~0.75)
DT	0.72(0.69~0.75)	0.67(0.64~0.70)	0.69(0.67~0.72)	0.70(0.67~0.72)	0.68(0.65~0.71)	0.71(0.68~0.75)
NB	0.68(0.65~0.71)	0.71(0.68~0.74)	0.69(0.67~0.72)	0.75(0.73~0.77)	0.69(0.66~0.72)	0.70(0.67~0.73)

AUC:曲线下面积

0.9

0.8

0.7

0.6

0.4

0.3

20 V 0.5

表5 RF建模的32个影像组学特征

序列	特征	权重	序列	特征	权重
1	对数变换_邻域灰度差矩阵_对比度	0.73	17	原始_邻域灰度差矩阵_长行程强调	0.19
2	对数变换_邻域灰度差矩阵_长行程低灰度强调	0.45	18	小波变换-LLL_一阶_峰度	0.19
3	对数变换_灰度区域大小矩阵_大区域低灰度强调	0.40	19	小波变换-LLL_邻域灰度差矩阵_长行程低灰度强调	0.19
4	小波变换-HHH_一阶_均值	0.32	20	小波变换-LLL_灰度区域大小矩阵_区域方差	0.19
5	小波变换-HLL_一阶_均值	0.28	21	小波变换-HHH_灰度共生矩阵_总和熵	0.19
6	对数变换_邻域灰度差矩阵_繁忙度	0.27	22	小波变换-LHL_灰度共生矩阵_聚类突出度	0.19
7	原始_形状_伸长率	0.27	23	小波变换-LHL_灰度区域大小矩阵_大区域强调	0.18
8	指数变换_一阶_峰度	0.24	24	对数变换_灰度共生矩阵_集群阴影	0.18
9	小波变换-LHH_灰度依赖矩阵_依赖非均匀性归一化	0.23	25	对数变换_邻域灰度差矩阵_运行方差	0.18
10	小波变换-HHL_邻域灰度差矩阵_长行程低灰度强调	0.23	26	小波变换-LHL_邻域灰度差矩阵_长行程低灰度强调	0.18
11	小波变换-LLL_一阶_偏度	0.22	27	梯度变换_邻域灰度差矩阵_对比度	0.18
12	小波变换-HLH_邻域灰度差矩阵_长行程低灰度强调	0.22	28	小波变换-HLH_一阶_第10百分位	0.18
13	小波变换-LLH_一阶_峰度	0.21	29	小波变换-LHH_一阶_中位数	0.18
14	小波变换-HHH_邻域灰度差矩阵_长行程高灰度强调	0.20	30	小波变换-HHH_邻域灰度差矩阵_灰度方差	0.18
15	小波变换-LLL_灰度共生矩阵_IMC2	0.20	31	指数变换_一阶_最小值	0.18
16	小波变换-LHL_邻域灰度差矩阵_运行方差	0.20	32	原始_灰度区域大小矩阵_大区域强调	0.17

- 训练集 - 独立测试集

A:分别使用 Mean、Z-score 及 MinMax 归一化方法,训练集及独立测试集中 AUC 比较;B:分别使用 PCC 及 PCA 特征降维方法,训练集及独立测试集中 AUC 比较;C:分别使用 ANOVA、KW、RFE 及 Relief 特征筛选方法,训练集及独立测试集中 AUC 比较;D:分别使用不同的特征数,训练集中 AUC 的比较,基于1-SE 原则确定最佳影像组学模型的特征数

图2 不同建模方法(归一化、特征降维、特征筛选方法及特征数选择)下RF模型在训练集及独 立测试集中鉴别肝包虫病分型的AUC比较

图3 RF模型在训练集及独立测试集中鉴别肝包虫病分型的ROC曲线图

讨 论

肝脏是包虫病最常见的受累器官,几乎所有原发 性AE病灶和70%的CE病灶均来源于肝脏,CE与AE 虽均由棘球绦虫引起,但二者在形态学、流行病学、病 理、临床过程、预后及临床治疗等方面均明显不同。 CE呈膨胀性生长,推荐使用阿苯达唑药物治疗;AE呈 浸润性生长,有类似恶性肿瘤的特征,可出现远处转 移,也被称为"虫癌",WHO推荐尽早行手术根治[11]。 然而,AE患者常由于误诊而接受了错误的治疗,非活 动性 CE 囊肿(CE4 或 CE5)临床常采用手术治疗[3]。 因此,准确诊断肝包虫病并进一步明确CE或AE与患 者后续的治疗及预后息息相关。但是,我国肝包虫病 地方性流行区多为经济发展落后的中西部牧区,当地 经济发展水平及基层卫生医疗条件相对落后,可能延 误诊断,影响患者的治疗及预后^[12]。超声检查具有图 像直观、无放射性、价廉、操作便倢等特点,是WHO 推荐的首选影像学工具,非常适合在包虫病流行区开 展筛查工作[6,13-14]。但进行肝包虫病筛查的一线医务 工作者缺乏必要的基础超声知识,其诊断水平参差不 齐,差异性较大,误诊肝包虫病分型的情况时有 发生[14-15]。

影像组学概念最早于2012年提出,其通过图像获取及重建、感兴趣区勾画、特征提取、特征筛选、模型构建等过程,从超声、CT、MRI等影像数据中高通量提取大量疾病的特征性影像特征^[16]。凭借对海量影像数据中高纬特征信息的提取与挖掘,有助于辅助临床医师对疾病做出更精准的诊断^[17-19]。影像组学不仅代表了医学与人工智能结合的前沿方向,也为未来医疗

的发展开辟了新的道路。Jia等^[20]综述了超声影像组 学的临床应用价值,发现超声影像组学目前主要应用 于鉴别良恶性肿块(甲状腺、乳腺、前列腺、肝脏等)、 预测肝纤维化分级、评估肿瘤的生物学活性及分子特 征等方面。目前尚未建立基于超声图像和人工智能 技术辅助诊断肝包虫病的规范。本研究利用两中心 的超声数据集,遵循超声影像组学流程,开发用于肝 包虫病诊断分型(CE与AE)的机器学习模型,结果显 示,RF模型在训练集及独立测试集中鉴别肝包虫病分 型的AUC分别为0.82、0.86、均高于SVM、AE、LDA、LR、 AB、DT、NB模型,差异均有统计学意义(均P<0.05)。 表明 RF模型的诊断效能最佳。RF模型使用 Mean 进 行数据归一化,使用PCC进行特征降维,使用Relief进 行特征筛选,基于筛选出的32个影像组学特征进行模 型构建,其在独立测试集中的灵敏度、特异度、准确 率、AUC分别为0.62、0.89、0.76、0.86,具有良好的诊断 效能。分析原因为:①本研究纳入了迄今为止最多的 肝包虫病超声图像;②使用来自不同制造商的超声仪 器进行成像,保证了模型的泛化性;③采用不同的归 一化、特征降维及特征筛选方法,动态筛选了1~40个 影像组学特征,最大程度地保留了原始特征矩阵的相 关信息,有利于在达到尽可能高的AUC的同时减少特 征数量,提高运算速度;④为获得最佳机器学习模型, 本研究探索了大量模型,包括目前临床广泛应用的 SVM、RF及Boosting策略模型。

本研究的局限性:①未纳入与肝包虫病超声表现 相似的肝脏病变,特别是与AE相似的肝脏病变,如肝 细胞癌、肝内胆管细胞癌、肝脓肿、肝血管瘤、肝转移 瘤、肝脏囊肿等;②未纳入与肝包虫病患者诊断相关 的临床信息,而超声医师在真实临床环境中极可能参 考这些信息;③独立测试集中机器学习模型的诊断准 确率仍不理想。目前,人工智能领域最流行的算法为 深度学习,将该算法应用到肝包虫病数据集是本课题 组未来的研究方向^[21-23];④构建的机器学习模型能否 真正满足肝包虫病流行区的临床工作,能否真正辅助 肝包虫病流行区的基层医务工作者,需进一步的探索 和比较;⑤本数据集仅包含来自我国四川地区的超声 图像,该模型在其他地区或其他国家对肝包虫病分型 的鉴别诊断效能亟待探讨。

综上所述,基于超声影像组学构建的机器学习模型在鉴别肝包虫病分型方面有较高的诊断效能,其中

RF 模型对鉴别肝包虫分型的诊断效能最佳,有助于 肝包虫病的精准超声诊断。今后可成立独立的肝包 虫病辅助诊断及分型的超声图像工作站,并部署到医 疗资源受限的包虫病流行区,从而改善医疗资源及医 疗服务的分配。

参考文献

- Wen H, Vuitton L, Tuxun T, et al. Echinococcosis: advances in the 21st century[J].Clin Microbiol Rev, 2019, 32(2):e00075-18.
- Stojkovic M, Junghanss T.Cystic and alveolar echinococcosis [J].
 Handb Clin Neurol, 2013, 114(1): 327–334.
- [3] Mustapayeva A, Manciulli T, Zholdybay Z, et al. Incidence rates of surgically managed cystic echinococcosis in Kazakhstan[J]. Am J Trop Med Hyg, 2020, 102(1):90-95.
- [4] 王平,黄品同.超声影像组学鉴别乳腺肿块良恶性的应用进展[J]. 临床超声医学杂志,2023,25(7):581-583.
- [5] Chetan MR, Gleeson FV.Radiomics in predicting treatment response in non-small-cell lung cancer; current status, challenges and future perspectives[J].Eur Radiol, 2021, 31(2):1049–1058.
- [6] 中国医师协会外科医师分会包虫病外科专业委员会.肝两型包 虫病诊断与治疗专家共识(2019版)[J].中华消化外科杂志, 2019,18(8):711-721.
- [7] Brunetti E, Kern P, Vuitton DA. Expert consensus for the diagnosis and treatment of cystic and alveolar echinococcosis in humans [J]. Acta Trop, 2010, 114(1):1-16.
- [8] Kratzer W, Weimer H, Schmidberger J. Echinococcosis: a challenge for liver sonography[J].Ultraschall Med, 2022, 43(2):120-145.
- [9] van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype [J]. Cancer Res, 2017, 77(21):e104-e107.
- [10] Song Y, Zhang J, Zhang YD, et al. FeAture Explorer(FAE): a tool for developing and comparing radiomics models [J]. PLoS One, 2020, 15(8):e0237587.
- [11] 李海涛,单骄宇,邵英梅,等.阿苯达唑脂质体和阿苯达唑片治疗 囊型包虫病的临床疗效及安全性[J].中华肝脏病杂志,2011,

19(7):532-536.

- [12] 张旭辉,索朗拉姆,邱甲军,等.基于超声影像组学建立肝棘球蚴 病分型模型的可行性研究[J].中国血吸虫病防治杂志,2022, 34(5):500-506,536.
- [13] Casulli A.Recognising the substantial burden of neglected pandemics cystic and alveolar echinococcosis [J].Lancet Global Health, 2020, 8(4):470-471.
- [14] Deplazes P, Rinaldi L, Rojas CA, et al. Global distribution of alveolar and cystic echinococcosis[J]. Adv Parasitol, 2017, 95(1): 315–493.
- [15] 柴君杰.我国棘球蚴病防治面临的挑战和研究需求[J].中国 寄生虫学与寄生虫病杂志,2009,27(5):379-383.
- [16] Lambin P, Rios-Velazquez E, Leijenaar R, et al.Radiomics: extracting more information from medical images using advanced feature analysis[J].Eur J Cancer, 2012, 48(4):441-446.
- [17] Gillies RJ, Kinahan PE, Hricak H.Radiomics: images are more than pictures, they are data[J].Radiology, 2016, 278(2):563-577.
- [18] Dercle L, McGale J, Sun S, et al. Artificial intelligence and radiomics: fundamentals, applications, and challenges in immunotherapy [J]. J Immunother Cancer, 2022, 10(9):e005292.
- [19] 张利文,方梦捷,臧亚丽,等.影像组学的发展与应用[J].中华放 射学杂志,2017,51(1):75-77.
- [20] Jia Y, Yang J, Zhu Y, et al. Ultrasound-based radiomics: current status, challenges and future opportunities [J].Med Ultrason, 2022, 24(4):451-460.
- [21] Yang Y, Cairang Y, Jiang TA, et al. Ultrasound identification of hepatic echinococcosis using a deep convolutional neural network model in China: a retrospective, large-scale, multicentre, diagnostic accuracy study[J].Lancet Digit Health, 2023, 5(8):503-514.
- [22] Wu M, Yan C, Wang X, et al. Automatic classification of hepatic cystic echinococcosis using ultrasound images and deep learning[J]. J Ultrasound Med, 2022, 41(1):163–174.
- [23] Xin S, Shi H, Jide A, et al. Automatic lesion segmentation and classification of hepatic echinococcosis using a multiscale-feature convolutional neural network[J].Med Biol Eng Comput, 2020, 58(3): 659-668.

(收稿日期:2023-11-25)